Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis.
نویسندگان
چکیده
OBJECTIVE Alterations in cerebral microvascular blood flow may develop during sepsis, but the consequences of these abnormalities on tissue oxygenation and metabolism are not well defined. We studied the evolution of microvascular blood flow, brain oxygen tension (PbO2), and metabolism in a clinically relevant animal model of septic shock. DESIGN Prospective randomized animal study. SETTING University hospital research laboratory. SUBJECTS Fifteen invasively monitored and mechanically ventilated female sheep. INTERVENTIONS The sheep were randomized to fecal peritonitis (n = 10) or a sham procedure (n = 5), and craniectomies were performed to enable evaluation of cerebral microvascular blood flow, PbO2, and metabolism. The microvascular network of the left frontal cortex was evaluated (at baseline, 6, 12, and 18 hr) using sidestream dark-field videomicroscopy. Using an off-line semiquantitative method, functional capillary density and the proportion of small perfused vessels were calculated. PbO2 was measured hourly by a parenchymal Clark electrode, and cerebral metabolism was assessed by the lactate/pyruvate ratio using brain microdialysis; both these systems were placed in the right frontal cortex. MEASUREMENT AND MAIN RESULTS In septic animals, cerebral functional capillary density (from 3.1 ± 0.5 to 1.9 ± 0.4 n/mm, p < 0.001) and proportion of small perfused vessels (from 98% ± 2% to 84% ± 7%, p = 0.004) decreased over the 18-hour study period. Concomitantly, PbO2 decreased (61 ± 5 to 41 ± 7 mm Hg, p < 0.001) and lactate/pyruvate ratio increased (23 ± 5 to 36 ± 19, p < 0.001). At 18 hours, when shock was present, animals with a mean arterial pressure less than 65 mm Hg (n = 6) had similar functional capillary density, proportion of small perfused vessels, and PbO2 values but significantly higher lactate/pyruvate ratio (46 ± 18 vs 20 ± 4, p = 0.009) compared with animals with an mean arterial pressure of 65-70 mm Hg (n = 4). CONCLUSIONS Impaired cerebral microcirculation during sepsis is associated with progressive impairment in PbO2 and brain metabolism. Development of severe hypotension was responsible for a further increase in anaerobic metabolism. These alterations may play an important role in the pathogenesis of brain dysfunction during sepsis.
منابع مشابه
Cerebral microcirculation is impaired during sepsis: an experimental study
INTRODUCTION Pathophysiology of brain dysfunction due to sepsis remains poorly understood. Cerebral microcirculatory alterations may play a role; however, experimental data are scarce. This study sought to investigate whether the cerebral microcirculation is altered in a clinically relevant animal model of septic shock. METHODS Fifteen anesthetized, invasively monitored, and mechanically vent...
متن کاملPathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock
Multiple experimental and human trials have shown that microcirculatory alterations are frequent in sepsis. In this review, we discuss the various mechanisms that are potentially involved in their development and the implications of these alterations. Endothelial dysfunction, impaired inter-cell communication, altered glycocalyx, adhesion and rolling of white blood cells and platelets, and alte...
متن کاملConcomitant Down-Regulation of Et1-Etb System and VEGF Angiogenic Signaling in the Frontal Cortex of Endotoximic Mice: A Heightened Vulnerability to Cerebral Microcirculation in Sepsis
Aims: Sepsis is a disease that involves abnormal alterations in the microcirculation, with endothelial dysfunction playing a central role in the pathogenesis and mortality. The exact pathophysiology of brain dysfunction associated with sepsis remains poorly understood and experimental data are scarce. It is likely that cerebral microcirculatory alterations may play a potential role. Thus, the p...
متن کاملThe effect of endotoxin adsorber haemoperfusion on microcirculation in septic pigs
Introduction Microcirculatory dysfunction plays an important role in sepsis-related multiple organ dysfunction.(1) Several studies has shown polymyxin B hemoperfusion has favorable effects on mean arterial pressure, vasopressor use, and mortality.(2) One rat sepsis study had found that microcirculation was better maintained in the polymyxin B hemoperfusion group.(3) However, the effects of poly...
متن کاملEffect of endotoxemia on heart rate dynamics in rat isolated perfused hearts
Introduction: Beat-to-beat variation in heart rate shows a complex dynamics, and this complexity is changed during systemic inflammatory response syndrome (e.g. sepsis). It is not known whether or not cardiac pacemaker dynamical rhythm is affected by sepsis. The aim of this study was to investigate heart rate dynamics of isolated heart as well as expression of pacemaker channels (HCN) in a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Critical care medicine
دوره 42 2 شماره
صفحات -
تاریخ انتشار 2014